Learning Classification Trees From Distributed
Horizonatally and Vertically Fragmented Data
Sets

Tarkeshwari Sharma, Adrian Silvescu, and Vasant Honavar
Artificial Intelligence Research Laboratory
Department of Computer Science
Iowa State University, Ames, [A 50011
{tarulsilvescul|honavar}@cs.iastate.edu

Abstract

! Recent advances in data storage and acquisition technologies have
made it possible to produce increasingly large data repositories. Most
of these data sources are physically distributed and assembling them
together at a central site is expensive in terms of network bandwidth
and insecure. Hence there is a need for Learning Algorithms that are
able to learn from distributed data without collecting it in a central
location. We present provably exact algorithms for learning decision
trees from distributed data sets. We prove that the results obtained
in this case are the same as those obtained if the data were stored at a
central location. We also give a time, space and communication cost
analysis.

We conclude with a discussion of a general technique for adapt-
ing some of the existing learning algorithms to learn from distributed
datasets.

1This research was supported in part from grants from the National Science Foun-
dation (NSF 9982341), Department of Defense, the John Deere Foundation, the Carver
Foundation, and Pioneer Hi-Bred Inc.)

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2000 2. REPORT TYPE 00-00-2000 to 00-00-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

L earning Classification Treesfrom Distributed Horizontally and
Vertically Fragmented Data Sets

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
lowa State University ,Artificial Intelligence Resear ch REPORT NUMBER
Laboratory,Ames,| A,50011

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 19
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Recent advances in sensor, high throughput data acquisition, and digital in-
formation storage technologies have made it possible to acquire, store, and
process large volumes of data in digital form in a number of domains. For
example, biologists are generating gigabytes of genome and protein sequence
data at steadily increasing rates. Organizations have begun to capture and
store a variety of data about various aspects of their operations (e.g., prod-
ucts, customers, and transactions). Complex distributed systems (e.g., com-
puter systems, communication networks, power systems) are equipped with
sensors and measurement devices that gather and store, a variety of data
that is useful in monitoring, controlling, and improving the operation of such
systems. Many application domains, (e.g., miliary command and control,
law enforcement etc) require the use of multiple, geographically distributed,
heterogeneous data and knowledge sources (Honavar, Miller & Wong, 1998;
Yang, Havaldar, Honavar etal., 1998). Translating the recent advances in our
ability to gather, process, and store data at increasing rates into fundamen-
tal gains in scientific understanding (e.g., characterization of macromolecu-
lar structure-function relationships in biology) and organizational decision
making presents several challenges in computer and information sciences in
general and machine learning, data mining, and knowledge discovery in par-
ticular.

Data repositories of interest in many applications are very large. Many
of the existing mining algorithms do not scale up to extremely large data
sets. One approach to this problem is to partition the data set into several
subsets of manageable size, learn from each resulting dataset, and somehow
combine the resulting hypotheses. In other applications (e.g., collaborative
scientific discovery) in addition to being large, repositories are autonomous
and physically distributed. Thus it is desirable to perform as much analysis
as possible at the sites where the datasets are located (e.g., using mobile soft-
ware agents that transport themselves to the data repositories, or stationary
software agents that reside at the repositories), and return only results of
analysis in order to conserve network bandwidth. The sheer volume and the
rate of accumulation of the data, often prohibits the use of batch learning
algorithms which would require processing the entire data set whenever new
data is added to the data repository. It is also possible that organizations
are not willing to provide access to raw data for various security and privacy

reasons but they allow access to some kind of summary or statistics of data,
e.g., count of people having a particular disease as opposed to revealing list
of names of people.

A key problem in acquiring useful knowledge from large, dynamic, dis-
tributed data sources is that of devising distributed learning algorithms that
can incorporate data across locations.

In this paper we present algorithms for learning decision trees from dis-
tributed data sets. The resulting algorithms that yield the same hypothesis
from a collection of distributed data sets as that obtained from the complete
data set. We also provide upper bounds on the time, space, and communica-
tion complexity of the proposed algorithms. We conclude with a discussion
of a general technique for adapting some of the existing algorithms to work
in a distributed setting.

The rest of the paper is organized as follows: In section 2 we give a
general idea of the problem and various ways of fragmenting the data. . In
section 3 we illustrate our technique by giving a solution to this problem, for
horizontally and vertically fragmented data, using decision trees. Section 4
concludes with a summary of the paper, a brief discussion of related work,
and a brief outline of ongoing and future research.

2 The Distributed Learning Problem

2.1 Distributed Learning

The distributed learning problem can be summarized as follows: The data is
distributed among different sites and the learner’s task is to discover some
useful knowledge (e.g., a hypothesis in the form of a decision tree that clas-
sifies instances). This can be accomplished by a learning agent that visits
the different sites to gather the information it needs to generate a suitable
hypothesis from the data. This corresponds to the serial distributed learning
scenario shown in figure 2. Alternatively, the different sites can transmit
the necessary information to the learning agent situated at a central loca-
tion as in the parallel distributed learning shown in figure 1. We assume
that it is not feasible in the distributed learning setting to transmit raw data
from different sites. Consequently, the learner has to rely on the informa-
tion extracted from the sites. Thus, identification the information required

by different learning algorithms, and design of efficient means for providing
such information to the learner are central questions that need to addressed
in devising distributed learning algorithms.

S

Datasetl Dataset2 Dataset3 Dataset4

Figure 1: Parallel Distributed Learning

Datasetl Dataset2 Dataset3 Dataset4

Collected Information (I

Figure 2: Serial Distributed Learning

A Distributed Learning algorithm Lpisiriputeq 15 said to be exact with re-
spect to the hypothesis inferred by a learning algorithm L if the hypothesis
produced by Lpisiributed using distributed data sets Dy --- D, stored at sites
L---n (respectively), is the same as that obtained by L from the complete
data set D. That is, Lpistriputea 18 an exact distributed learning algorithm
with respect to the hypothesis inferred by a learning algorithm L if it is the
case that:

Listrivutea (D1, Do, ..., D) = L(D;UDyU...UD,,)

where U denotes multiset union. For example, the multiset union of the
multisets {a ba} and {bcad}is{aaabbecd}.

Similarly, we can define exact distributed learning with respect to other
criteria of interest (e.g., expected accuracy of the learned hypothesis). More
generally, it might be useful to consider approzimate distributed learning
in similar settings. However, we restrict the discussion that follows to an
approach to exact distributed learning using information extraction.

This approach to exact distributed learning involves extracting from dis-
tributed datasets, the information necessary for inferring the appropriate
hypothesis. We introduce the information extraction operator /(D;) that ex-
tracts from each data set D;, the information necessary for L p;siriputed t0 learn
from Dy --- D,,. If the information extracted from the distributed datasets is
same as that used by L to infer a hypothesis from the complete dataset D
(that is, C[I(D1), 1(Ds3),,1(D,)] = (D)), Lpistributea Will be exact with
respect to L.

2.2 Horizontally and Vertically Fragmented Distributed
Data Sets

A data set D is distributed among sites 1 ---n containing data set fragments
Dy---D,. The fragments can correspond to horizontal, vertical, or both
horizontal and vertical fragmentation of D. We assume that the individual
data sets Dy --- D, altogether contain enough information to generate the
complete dataset D. However, it might be the case that the individual data
sets are autonomously owned and maintained. Consequently, the access to
the raw data may be limited and only summaries of the data (e.g., number
of instances that match some criteria of interest) may be made available to
the learner. Furthermore, given the sheer size of the data sets, it may not be
feasible to explicitly construct the complete data set D at a central location.

e Horizontal Fragmentation: In this case, the data is distributed in such
a manner that each site contains a multiset of tuples. The (multiset)
union of all these multisets constitute the complete dataset. If the
multisets of tuples of data are indicated by Dy, D, ..., D,, each site

contains one or more of these sets. Let D denote the complete data
set, then Horizontally Distributed Data (HDD) has the property:

A complete data set containing student data is shown in tablel. Hori-
zontal fragments of this dataset are shown in table2 and table3.

Student Id Name Department GPA
1121 Taru Trivedi | Computer Science | 3.5
1122 Adrian Silvescu | Animal Science 3.7
1123 John Silver Animal Science 3.8
1124 Doina Caragea | Computer Science | 3.6

Table 1: Student Dataset (Complete)

Student Id Name Department GPA
1121 Taru Trivedi | Computer Science | 3.5
1122 Adrian Silvescu | Animal Science 3.7

Table 2: Student Dataset (Horizontal Fragment I)

Student Id Name Department GPA
1123 John Silver Animal Science 3.8
1124 Doina Caragea | Computer Science | 3.6

Table 3: Student Dataset (Horizontal Fragment II)

e Vertical Fragmentation: In this case, each data tuple is fragmented into
several subtuples each of which shares a unique key or index. Thus,
different sites store vertical, possibly overlapping, fragments of the data
set. Fach fragment corresponds to a subset of the attributes that de-
scribe the complete data set.

Let Ay, A,, ..., A, indicate the set of attributes whose values are stored
at sites 1---n and A denote the set of attributes that are used to

describe the data tuples of the complete data set. Then Vertically
Distributed Data (VDD) has the property:

Let Dy, D,, .., D, respectively denote the fragments of the dataset stored
at sites 1---n and let D denote the complete data set. Let the ¢th tu-
ple in a data fragment D; be denoted as tijj. Let t%ﬂ.um’que_index
denote the unique index associated with tuple tp,- The VDD has the

property:

DixDyx...xD,=D

VY D;, Dy, tD].umque_mde:c = tp, -unique index

Thus, the subtuples from the vertical data fragments stored at dif-
ferent sites can be put together using their unique index to form the
corresponding data tuples of the complete dataset. It is possible to
envision scenarios in which a vertically fragmented data set might lack
unique indices. In such a case, it will be necessary to combinations of
attribute values to infer associations among tuples. In what follows,
we will assume the existence of unique indices in vertically fragmented
distributed data sets.

Vertical fragments of the student dataset shown in tablel are shown in
table4 and tableb. In this case, the student id is used as the unique
index associated with subtuples.

Student Id Name Department
1121 Taru Trivedi | Computer Science
1122 Adrian Silvescu | Animal Science
1123 John Silver Animal Science
1124 Doina Caragea | Computer Science

Table 4: Student Dataset (Vertical Fragment I)

Similarly, we can envision distributed data sets that are both horizon-
tally and vertically fragmented.

Student Id Department GPA

1121 Computer Science | 3.5
1122 Animal Science 3.7
1123 Animal Science 3.8

1124 Computer Science | 3.6

Table 5: Student Dataset (Vertical Fragment II)

3 Distributed Learning using Decision Trees

This section discusses the decision tree learning algorithm (Quinlan, 1986)
and shows how it can be adapted to work with horizontally and vertically
distributed data sets.

3.1 Decision Tree Learning

Decision tree learning is a method for approximating discrete valued target
functions from labeled examples, where the learned function is represented
by a decision tree. The ID3 (Iterative Dichotomizer 3) algorithm proposed
by Quinlan (Quinlan, 1986) and its variants offer a simple, and practically
rather effective approach to inferring decision trees from labeled examples.
Consider a set of instances S which is partitioned into M disjoint subsets

(classes) C1,Cy, ..., Cpy such that
M
e S = U C
=1

e C;NC,=0Yi#j

The probability of a randomly chosen instance s € S belonging to class

C; is %, where | X | denotes the cardinality of the set X. So, the information

content of the knowledge of membership of a randomly chosen instance in
class C; is —log, (%) bits. The expected information content of knowledge

of class membership of a random instance s € S is

15| (|Cj|)
D o L P el
251 e | g

J

This quantity, which is also known as the entropy of set S and mea-
sures the expected information needed to identify the class membership of
instances in S. The decision tree learning algorithm searches in a greedy
fashion, for attributes that yield the maximum amount of information for
determining the class membership of instances in a training given training
set S of labeled instances. The result is a decision tree that correctly assigns
each instances in S to its respective class. The construction of the deci-
sion tree is accomplished by recursively partitioning S into subsets based on
values of the chosen attribute until each resulting subset has instances that
belong to exactly one of the M classes. The selection of attribute at each
stage of construction of the decision tree maximizes the estimated expected
information gained from knowing the value of the attribute in question.

The information gain for an attribute a, relative to a collection of in-
stances S is defined as:

Entropy(S) — Y. ~—=Entropy(S,)
veValues(A

where Values(A) is the set of all possible values for attribute A, and S,
is the subset of S for which attribute a has value v.

The information gain associated with an attribute can be calculated using
the count of examples from different classes that have specific values for the
attribute in question.

Suppose we want to partition the set of instances at a particular node in
a partially constructed decision tree. Let a; denote the attribute at the jth
node (starting from the root node) leading up to the node in question. Let
v(a;) denote the value of the attribute a; attribute along the path leading
up to the node in question.

For adding a node below any branch of tree, the set of examples being
considered satisfy the constraints on values of attributes specified by:

Ly = [a1 = v(a;), a3 = v(az),...,a; = v(a;)]

where [is the depth of the node in question.

We need to obtain the relevant counts from the set of examples that
satisfy this constraint. This calculation has to be performed once for each
node that is added to the tree starting with the root node.

Using the following two theorems, we prove that count of examples col-
lected from distributed data sets is same as that which would be collected
from the complete data set. This suffices to prove that the decision tree
constructed from a given data set in the two scenarios is exactly same.

When data is horizontally distributed, examples for a particular value of a
particular attribute are scattered at different locations. For finding the count
of examples for a particular node in tree, all the sites are visited and count is
accumulated. The learner uses this count to find the best attribute to further
partition the set of examples being considered. We use f; to denote the count
of examples that satisfy the constraints specified by L; and f; denotes the the
count of examples that satisty the constraints given by L; at site z. Algorithm
for computing the counts in case of HDD is shown in fig 3:

Algorithm ComputeCountHDD

Input: [; (attributes and their values along the path leading upto the
node under which a subtree is being added)

Output: count of examples across all sites that satisfy the constraints spec-
ified by L;.
fi=0

fori:=1tom /[there are m sites
fo=i4f
return f
end

Figure 3: Algorithm Compute Count for HDD.

Theorem 1 For every input L; =fa; = v(a1),a2 = v(ag),...,a; = v(a;)/,
ComputeCountHDD(l) computes f;.

Proof;n .
f=

= number of examples that satisfy constraints given by L; in(D;UD,U...UD,,)
// by definition of HDD

= fi O

10

In this algorithm, for each node in tree, f; is calculated for a set of at-
tributes and their values.

Time Complexity: The time required to calculate fi at each site 7, is
proportional to | D; |. Hence, the time required for calculating f; is there-
fore proportional to | (D1UDU...UD,, | = | D |. Let A denote set of all
attributes and V denote the largest set of values that an attribute can take.
For each node, the maximum time required to calculate f; is bounded by
| A|| V|| D |. Therefore, the run time of the distributed decision tree learn-
ing algorithm for horizontally distributed data sets is proportional to the the
product of the time required per node and the number of nodes in the tree.

Let treesize(D) denote the number of nodes in the decision tree constructed
from the dataset D. Then the run time of the algorithm is bounded by of
nodes and is | A || V || D | treesize(D).

Space Complexity: The information gathered to facilitate learning is sim-
ply the counts of examples for each class along each outgoing branch of the
node in question. A loose upper bound for this is given by M | A || V|
where M is the number of classes.

Communication cost: The upper bound for information carried from one
location to another is M | A || V | for one node in the tree. Hence, the
communication cost involved in constructing the complete tree is M | A ||
V| treesize(D).

In vertically distributed datasets, we assume that each example has a
unique indices associated with it. Subtuples of an example are distributed
across different sites. However, they can be related to each other using their
unique index. In order to select the attribute to partition the instances at a
node in a partially constructed tree, the relevant counts are gathered using
the unique indices. To find the best attribute, a pass is made through all
the data sites to compute the count of examples. As before, let L; =[a; =
v(ay),az = v(az),...,a; = v(a;)] denote constraints on the values of attributes
satisfied by the instances at the tip of the node in question. Let I, , denote
the set of indices for tuples satistying L;_y. We use fr, to denote the count
of examples that satisfy the constraints given by L; among the set of tuples
with indices in Iy,_,.

Algorithm for computing the counts in case of VDD is shown in fig 4.

11

Algorithm ComputeCountVDD

Inputs: L, (attributes and their values along the path leading upto the
node under which a subtree is being added), I, , (the set of indices of
instances that satisfy the constraint L;_;.
Output: count of examples whose indices are in [;;_; and satisty the con-
straints specified by L.
begin
visit the site that has subtuples that has values for the attribute a;
Compute I, by selecting tuples which satisty the constraint L; and
whose indices appear in Iy, ,
return | [z, |
end

Figure 4: Algorithm Compute Count for VDD.

Theorem 2 For every input specified by L; and I1,_,, ComputeCountVDD(L;,I1,_,)
computes fr,.

Proof:
Provided that I}, is correctly computed, then | I, | = fi,

We prove this by induction. Base case:
I1,, = the set of all indices.

Induction step:
IL; = The set of indices in 1L;_; that satisfy a; = v(a;) O
" node (assuming
left to right numbering of nodes) at depth k in the tree is denoted by Ij,.
Let A denote set of all attributes, V' denote the largest set of values that an
attribute can hold and let & denote the depth of the tree. Since each node

in the tree corresponds to a unique combination of attribute values, indices

Suppose we denote the indices for the examples at the n

of examples at one node cannot appear in another node at the same depth
in the tree. That is,
VENi#j LNl =¢)

12

Time Complexity: The time required for partitioning the examples at
the nth node at depth & is

| ATVl e |

Therefore, the time required for partitioning examples at all of the nodes at
depth £ in the tree bounded by

> ANV e |

n€Levelk
=[AV IX | Ik |
<| AV ID]

for all levels in tree,
< > [AlIVIID]

k€levels

<[ANVIID A

Space Complexity: Information gathered to facilitate learning is simply
the counts of examples for each class along each outgoing branch of the
node in question along with the relevant indices. Let indexsize denote the
space required to store an index. A loose upper bound for this is given by
M| A||V |+ | D| indexsize where M is the number of classes and

| D | indexsize provides an upper bound on the number of indices.

Communication Complexity: The upper bound for the information car-
ried from one site to another is M | A || V | + | D | indexsize for one
node in the tree. Hence, the communication cost involved in constructing
the complete tree is (M | A ||V | + | D | indexsize)treesize.

The bounds given above are loose worst case upper bounds. They are
based on naive implementation of the proposed algorithms to make the key
ideas and the complexity analysis transparent to the reader. In practice,
the time, space, and communication requirements can be less than those
indicated by the bounds. For example, while implementing the HDD algo-
rithm, we collect the counts for all attributes and their values at each site.

13

This avoids the need to visit a site once separately for each attribute and
its value. Hence, the overall time required for calculating f for each node is
bounded by | D |. Therefore, the runtime of the algorithm is bounded by
| D | treesize(D). Similarly, in the case of vertically distributed data, we
find the local best attribute at a site and transmit that information. This
avoids the need to visit a site for counts corresponding to every attribute
and hence, the run time is bounded by | D | h. Since the information
carried is only the information gain of the local best attribute, the space
required reduces to | D | indexsize. The communication cost also reduces to
(| D | indexsize)treesize.

4 Summary and Discussion

The design and analysis of efficient algorithms for learning from distributed
data sets is one of the key challenges which needs to be addressed in order for
us to be able to translate recent advances in our ability to gather and store
large volumes of data into deeper understanding of the respective domains.

Most distributed and incremental learning algorithms that have been pro-
posed in the literature (Davies, & Edwards, 1998; Domingos, 1997; Prodro-
midis & Chan, 1999; Provost, & Hennessy, 1996) have the disadvantage
that the learning is not exact. Furthermore, most of them do not guarantee
generalization accuracies that are provably close to those obtainable in the
centralized setting. At present, with the exception of some interesting re-
sults (e.g., mistake bounds) for the closely related problem of online learning
(Littlestone, 1988; Littlestone, 1994; Vovk, 1990; Blum, 1996; Bottou, 1998),
a characterization of hypothesis classes that admit efficient and scalable al-
gorithms for exact or approximate distributed learning is lacking. Yet from
a practical standpoint, the design and implementation of such algorithms is
clearly of interest.

An approach to adapting decision tree learning algorithms to work with
distributded databases was explored in (Bhatnagar & Srinivasan, 1997). The
scenario that they address can be viewed as a variant of the vertical frag-
mentation of data discussed in this paper. However, since their approach is
motivated by somewhat different considerations, it is focused on the problem
of obtaining counts from implicit tuples. In particular, they do not assume
the existence of a unique index for each tuple in the complete data set that

14

can be used to associate the subtuples of the tuple. The resulting algorithm
simulates the effect of join operation on the sites without enumerating the
tuples.

The distributed decision tree learning algorithms discussed in this paper
are designed to deal with horizontally fragmented or vertically fragmented
distributed data sets. They operate by decomposing the learning task into
an information extraction phase and a hypothesis generation phase. This
provides a general approach to designing provably exact distributed learning
algorithms. The approach to learning from vertically fragmented distributed
data sets assumes the existence of a unique index for each tuple in the com-
plete data set. This assumption significantly simplifies the theoretical anal-
ysis of the resulting algorithm. Furthermore, in many distributed learning
scenarios that arise in practice, it is reasonable to make such an assump-
tion. For example, in scientific datasets generated by a number of collabo-
rating laboratories investigating molecular structure-function relationships,
each sample is identified by a unique identifier. However, it is possible to re-
lax this assumption to modify the algorithm to deal with distributed learning
scenarios wherein such an assumption may not hold.

The algorithms for distributed learning discussed in this paper assume
either horizontal fragmentation or vertical fragmentation of data, but not
both. However, it is relatively straightforward to devise distributed learning
algorithms for data sets that exhibit both horizontal and vertical fragmenta-
tion.

In this paper, we presented adaptations of decision tree learning algo-
rithms that can deal with horizontally and vertically distributed datasets
without collecting all of the data at a central location. The approach used
to devise distributed versions of the algorithm consists of two key compo-
nents: identification of the information requirements of the learner; design of
efficient means of providing the necessary information to the learner in the
distributed setting. This decomposition of the learning task into informa-
tion gathering and hypothesis generation phases offers a general approach to
adapting some of the existing learning algorithms to work in the distributed
setting (see figure 5). The hypothesis generation component of the of the al-
gorithm can be thought of as the control part of the algorithm, which triggers
the execution of the information gathering part as needed. The execution of
the two parts is typically interleaved in time. In this model of distributed
learning, only the information gathering component has to effectively cope

15

with the distributed nature of the data.

In the case of the decision tree learning algorithm, the information re-
quired by the learner is in the form of counts of examples that belonging
to each class and satisfying certain constraints with respect to the values
that they have for different attributes. This information is sufficient for the
hypothesis generation component of the algorithm to produce the appropri-
ate hypothesis in the form of a decision tree that correctly classifies all the
examples in the distributed data set.

Knowledge
Information Processing
Level
Information Processing-Extraction
Boundary
Information Extraction Level
DATA

Figure 5: Decomposition of the Learning task into information extraction
and learning components. The hypothesis generation component calls on
the information extraction component as needed.

In this model of distributed learning, the boundary that defines the divi-
sion of labor between the information gathering and hypothesis generation
components can be set at various levels. At one extreme, if no information
gathering is performed, the hypothesis generation component needs to ac-
cess the raw data. An example of this scenario is provided by distributed
instance based learning of k£ nearest neighbor classifiers in the case of hori-

16

zontally fragmented data set. Here, the data set fragments are simply stored
at the different sites. Classification of a new instance is performed by the
hypothesis generation component which computes the k nearest neighbors
of the instance to be classified (based on some specified distance metric) by
visiting the different sites. The classification assigned to the instance is the
same as the majority class among the £ nearest neighbors of the instance.

At the other extreme, if the boundary between information gathering and
hypothesis generation is set at the highest level, the task of the hypothesis
generation component is trivial since the information gathered by the in-
formation gathering component directly yields the desired hypothesis. It is
easy to show that this approach yields effective algorithms for learning purely
conjunctive hypotheses in the distributed setting.

Given the relatively large number of learning algorithms that have been
developed over the past decades, and the large body of theoretical and em-
pirical results associated with existing algorithms, the proposed approach to
devising distributed learning algorithms merits further investigation.

Work in progress is aimed at the elucidation of the necessary and suffi-
cient conditions that guarantee the existence of exact or approximate cumu-
lative learning algorithms in general and different types of incremental and
distributed learning algorithms in particular in terms of the properties of
data and hypothesis representations and information extraction and learning
operators; characterization of information requirements for distributed and
incremental learning under various assumptions; investigation of optimum di-
vision of labor between the information gathering and hypothesis generation
components of the algorithm under different assumptions. design of theoret-
ically well-founded algorithms for incremental and distributed learning; and
application of such algorithms to large-scale data-driven knowledge discovery
tasks in applications such as bioinformatics and computational biology.

References

Honavar, V., Miller, L., & Wong, J. (1998). Distributed Knowledge Networks,
In: Proceedings of the IEEE Conference on Information Technology, Syra-
cuse, NY.

Yang, J., Havaldar, R., Honavar, V., Miller, L. & Wong, J. (1998). Coordina-

17

tion of Distributed Knowledge Networks Using Contract Net Protocol, IEEE
Information Technology Conference Syracuse, NY.

Quinlan, J. R. (1986). Induction of Decision Trees, Machine Learning, vol
1, pp 81-106.

Domingos, P. (1997). Knowledge Acquisition from FEzamples Via Multiple
Models, In: Proceedings of the Fourteenth International Conference on Ma-

chine Learning, Nashville, TN.

Prodromidis, A.L., and Chan, P.K. (1999). Meta-learning in distributed data
mining systems: Issues and Approaches, Book on Advances of Distributed
Data Mining, editors Hillol Kargupta and Philip Chan, AAAI press (under

review).

Provost, F., and Hennessy, D. (1996). Scaling Up: Distributed Machine
Learning with Cooperation. In: Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence.

Littlestone, N. (1988). Learning when irrelevant attributes abound, Machine
Learning, 2:285-318.

Littlestone, N. (1994). The weighted majority algorithm, Information and
Computation, 108:212-261.

Vovk, V. (1990). Aggregating Strategies. In: Proceedings of the Third An-
nual Workshop on Computational Learning Theory.

Blum, A. (1996). On-line Algorithms in Machine Learning (a survey). In:
Dagstuhl Workshop on On-line Algorithms, Dagstuhl, Germany.

Davies, W., & Edwards, P. (1998). DAGGER: A New Approach to Combin-
ing Multiple Models Learned from Disjoint Subsets, ML99

Bottou, L. (1998). Online Learning and Stochastic Approximations, Online
Learning and Neural Networks, David Saad editor, Cambridge University
Press, Cambridge, UK.

18

Bhatnagar, R. & Srinivasan S. (1997). Pattern Discovery in Distributed
Databases, AAAI9T, pp 503-508.

19

